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Nearable tech for sleep monitoring
Printable, flexible, stretchable, sensors

Development of novel low-cost soft electronics on fabric

* Wearables are typically rigid, breakable (eg smartwatches) and require user
interaction.

 RMIT & Sleeptite developed durable electronics that are conformal,
stretchable, flexible and can be embedded onto fabric 12

* These new ‘nearable’ sensors are low-cost and capable of scalable

production.
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Nearable tech for sleep monitoring | Aged Care - REMi

* Developed for the Aged Care sector with sensors embedded onto the mattress protector

(underside) and imperceptible to the user3
Soft Pressure Sensor

* Piezo-resistance (pressure) sensor design for real-time biometrics monitoring with high
sensitivity.

Mattress cover
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Encapsulation

e The REMi® system can wirelessly measure body presence, position, posture, motion,
respiration and heart rate- without the need for user interaction.

REMI

Conductive ink
PU layer

Foam mattress
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Wi-Fi/BLE
control box
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What is REMi?
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REM| | Current device capabilities

REMi data transmitted to cloud-based dashboards to be viewed by care staff

Supporting the aged care workforce
and prioritising provision of care
through real time monitoring of

resident status.

Continuous monitoring a of a resident's presence, position and posture in bed
'Nearable' sensors embedded in mattress cover are imperceptible to the user
REMi system has the capability to integrate with other systems/dashboards
REMi can be used in both Aged care facilities and Aging in place
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Clinical sleep study polysomnography (PSG) is complex!

 Multiple physiological signals

Direct EEG markers of sleep
EOG and EMG

Oximetry AL
Breathing

Body position & movements
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Ground
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Low voltage, random fast

Alpha waves (8-12 Hz)

Theta waves (3-7 Hz)

Sleep spindles, K complexes

Delta waves (0.5-2 Hz >75uV)
(>20%, <50% of epoch)

Delta waves (0.5-2 Hz >75uV)
(>50% of epoch)

Low voltage, random fast
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Better use of physiological data

CURRENT APPROACHES EMERGING APPROACHES
Advantages: Lots of detailed rich neurophysiclogical data Advantages: Makes use of routinely collected data to provide novel
collected. insight into sleep neurobiolegy and treatment prediction to better link

with key clinical and health outcomes.
Disadvantages: Most of the collected information is currently

ignored, traditional metrics are imprecise and do not predict Disadvantages: Most approaches are still at the research and develop-
treatment response or relate well to key clinical and health ment phase and are not currently available for clinical use at scale,
outcomes,
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Bedroom of the Future — New technology to monitor
sleep and health outcomes
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Lechat et al. Front Neurosci. 2021
Oct 7;15:751730. doi:
10.3389/fnins.2021.751730.
eCollection 2021
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New Technology
Under mattress sensors to quantify sleep and disorders

EarlySense - under mattress, respiration, HR, movement

e  AHl validation — AHI>15 — Sensitivity = 88%, Specificity = 89% (Davidovich et al, e
DOI:10.22489/CinC.2016.246-183)

FullPower Al Sleep Monitor — under/in mattress,

respiration, HR, movement

e AHl validation — AH215 — Sensitivity = 82%, Specificity = 93% (Ding et al,
https://doi.org/10.1016/j.sleep.2022.04.010)
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Withings Sleep Analyser— under/in mattress, respiration,

HR, movement

* AHI validation — AHI>15 — Sensitivity = 88%, Specificity = 89% (Edouard et al, J Clin Sleep
Med 2021 doi: 10.5664/jcsm.9168, independent AISH validation verified)
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Night to night variation in sleep apnea
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Group
Participant number
(ordered from lowest to highest mean AHI)
Night 1 Best Night Worst Night Mean
AHI(/h) 6.4[1.7-14.3] 2.0[0.0-8.0] 8.9[4.8-23.3] 5.0[2.2-14.3]
Normal 26 (67%) 32 (82%) 20 (51%) 24 (62%)
Mild 5(13%) 7 (18%) 6 (15%) 9 (23%)
Moderate 5(13%) 0 (0%) 9 (23%) 6 (15%)
Severe 3 (8%) 0 (0%) 4 (10%) 0 (0%)
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EarlySense
live

Median and interquartile range AHI and the number (%) of
participants classified as normal (AHI <10 /h) or mild (AHI 10-20
/h), moderate (AHI 20-30 /h) or severe (AHI >30 /h) OSA based on
their night 1, best night (lowest AHI), worst night (highest AHI) and
mean AHI across all available nights from N=39 participants.



Probability of OSA mis-classification

FullPower Al Sleep Monitor Withings Sleep Analyser
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Misclassification probability based on a single night study, which ranged from approximately 0 to 60%. If 10% is used as
the maximally acceptable error rate (i.e. 90% probability of correct classification), up to 30.5%-33% of the population
would get an inconclusive/misclassified result from a single night study. Furthermore, the misclassification rate was
significantly more prevalent in individuals with a 28 night average AHI indicative of OSA compared to those without
OSA (62 — 62.6% versus 21-25%).
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How many nights monitoring is enough?

FullPower Al Sleep Monitor
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Receiver operator characteristic (ROC) and precision-recall (PR) curves show that the likelihood of misclassification
of OSA depends on the number of nights used for AHI evaluation. 7 or preferably 14 nights substantially decrease
the likelihood of misclassifying patients that truly have OSA as a non-OSA patient

Flinders
University




Clusters/phenotypes of AHI N2NV
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Median split of AHI standard deviation across all
nights showing both mild (AHI 5-15) and moderate
to severe OSA (AHI >15) categories have distinct
clusters of people with low (Stable) AHI and high
(Unstable) AHI variability



Association between nightly variation is sleep apnea
severity and hypertension

QOdds ratio
0.50 0.75 1.00 1.40 1.80 2.20
AHI variability L1 (1 I | | | | I I Mean (95% CT)
|
I m 5<AHI<15
4 m AHI=15 1 (ref)
Quartile 1
A 1 (ref)
|
|
| o
| p— 1.10 (0.87, 1.40)
Quartile 2
Jl_n_ 1.16 (0.92, 1.46)
|
|
| [— —1 1.33 (1.05, 1.67)
uartile 3
|
|
| i
I - — 1.59(1.27, 1.99)
1artile 4
@ I — ‘— 1.70 (1.37,2.12)
|
" Lechat et al. under review - Confidential
Flinders

University



Flinders
University

Hours of sleep

Normal sleep reduces with age

. Daytirne sleep D Nighttime slep

8 Figure 1: Age-related trends for average total
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Sleep Complaints as we Age
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Prevalence of Sleep Disorders with ageing

Condition All Adults  Elderly
Insomnia 10-20% 40-50%
Sleep Apnea 10%-25%/|| 24%-40%
Periodic Limb Movements | 2-5% 30%-45%
Restless Leg Syndrome | 2%-15% 12%-30%
REM Sleep Behavior D/O |0.5% 0.5%-2%

" Young T, et al., Ancoli-Israel S, et al., Sleep 2001; Mant E, et al., Age and Ageing 1992; Ancoli-Israel S, et al. Sleep 1993;
Flinders Phillips BA, et al., Sleep 1994; Hoch CC, et al., Sleep 1994; O’Keefe ST, et al., Age and Ageing 1994; Phillips B, et al., Arch
University Int Med 2000; Allen R, et al. Arch Int Med 2005



Aging Worsens the Effects of Sleep Deprivation on
Postural Control

Rébecca Robillard'*, Francois Prince?, Daniel Filipini', Julie Carrier'>*

1Center for Advanced Research in Sleep Medicine, Hopital du Sacré-Ceeur de Montréal, Montréal, Québec, Canada, 2 Département de Kinésiologie, Université de
Montréal, Montréal, Québec, Canada, 3 Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada, 4 Département de Psychologie,
Université de Montréal, Montréal, Québec, Canada
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Sway variability as a function of time of day & time
awake
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Fig 2: Sway variability as a function of time of day (a) & time awake (b)
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Effect of 6 months CPAP on Physiological Profile Assessment Falls
Risk Score
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Summary and Conclusion

* Sleep and breathing vary significantly from night to night

* New and emerging technologies allow for multi-night sleep
measurement

e Quantifying night to night sleep and sleep disorders likely relate to
important health outcomes

* Provides unique opportunity for unintrusive in-home sleep health
monitoring in older people towards
 Sleep disorder screening and monitoring
* Preventative strategies
* Healthy ageing
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