New Technology Approaches for Monitoring Sleep & Sleep Disorders

Andrew Tucker, PhD Director – Research & Development Sleeptite Pty Ltd Andrew Vakulin, PhD Associate Professor – NHMRC Career Development Fellow Adelaide Institute for Sleep Health College of Medicine and Public Health Flinders University

Contact

e: andrew@sleeptite.com.au | w: sleeptite.com.au

Nearable tech for sleep monitoring Printable, flexible, stretchable, sensors

Development of novel low-cost soft electronics on fabric

- Wearables are typically rigid, breakable (eg smartwatches) and require user interaction.
- RMIT & Sleeptite developed durable electronics that are conformal, stretchable, flexible and can be embedded onto fabric ^{1,2}
- These new 'nearable' sensors are low-cost and capable of scalable production.

Nearable tech for sleep monitoring | Aged Care - REMi

- Developed for the Aged Care sector with sensors embedded onto the mattress protector (underside) and imperceptible to the user³
- Piezo-resistance (pressure) sensor design for real-time biometrics monitoring with high sensitivity.
- The REMi[®] system can wirelessly measure body presence, position, posture, motion, respiration and heart rate- without the need for user interaction.

What is **REMi**?

REMI | Current device capabilities

Supporting the **aged care workforce** and prioritising provision of **care** through **real time monitoring** of resident status.

- REMi data transmitted to cloud-based dashboards to be viewed by care staff
- Continuous monitoring a of a resident's *presence, position* and *posture* in bed
- 'Nearable' sensors embedded in mattress cover are imperceptible to the user
- REMi system has the capability to integrate with other systems/dashboards
- REMi can be used in both Aged care facilities and Aging in place

🔂 sleeptite

Clinical sleep study polysomnography (PSG) is complex!

Multiple physiological signals

- Direct EEG markers of sleep
- EOG and EMG
- Oximetry
- Breathing
- Body position & movements

http://www.dailymail.co.uk

Better use of physiological data

Lechat et al. Front Neurosci. 2021 Oct 7;15:751730. doi: 10.3389/fnins.2021.751730. eCollection 2021

Bedroom of the Future – New technology to monitor sleep and health outcomes

Lechat et al. Front Neurosci. 2021 Oct 7;15:751730. doi: 10.3389/fnins.2021.751730. eCollection 2021

New Technology Under mattress sensors to quantify sleep and disorders

EarlySense - under mattress, respiration, HR, movement

• AHI validation – AHI>15 – Sensitivity = 88%, Specificity = 89% (Davidovich et al, DOI:10.22489/CinC.2016.246-183)

FullPower AI Sleep Monitor – under/in mattress, respiration, HR, movement

• AHI validation – AH≥15 – Sensitivity = 82%, Specificity = 93% (Ding et al, https://doi.org/10.1016/j.sleep.2022.04.010)

Withings Sleep Analyser – under/in mattress, respiration, HR, movement

• AHI validation – AHI≥15 – Sensitivity = 88%, Specificity = 89% (Edouard et al, J Clin Sleep Med 2021 doi: 10.5664/jcsm.9168, independent AISH validation verified)

Night to night variation in sleep apnea

	Night 1	Best Night	Worst Night	Mean
AHI (/h)	6.4 [1.7-14.3]	2.0 [0.0-8.0]	8.9 [4.8-23.3]	5.0 [2.2-14.3]
Normal	26 (67%)	32 (82%)	20 (51%)	24 (62%)
Mild	5 (13%)	7 (18%)	6 (15%)	9 (23%)
Moderate	5 (13%)	0 (0%)	9 (23%)	6 (15%)
Severe	3 (8%)	0 (0%)	4 (10%)	0 (0%)

Median and interquartile range AHI and the number (%) of participants classified as normal (AHI ≤ 10 /h) or mild (AHI 10-20 /h), moderate (AHI 20-30 /h) or severe (AHI >30 /h) OSA based on their night 1, best night (lowest AHI), worst night (highest AHI) and mean AHI across all available nights from N=39 participants.

EarlySense

Probability of OSA mis-classification

Withings Sleep Analyser

Misclassification probability based on a single night study, which ranged from approximately 0 to 60%. If 10% is used as the maximally acceptable error rate (i.e. 90% probability of correct classification), up to 30.5%-33% of the population would get an inconclusive/misclassified result from a single night study. Furthermore, the misclassification rate was significantly more prevalent in individuals with a 28 night average AHI indicative of OSA compared to those without OSA (62 – 62.6% versus 21-25%).

How many nights monitoring is enough?

FullPower AI Sleep Monitor

Withings Sleep Analyser

Receiver operator characteristic (ROC) and precision-recall (PR) curves show that the likelihood of misclassification of OSA depends on the number of nights used for AHI evaluation. **7 or preferably 14 nights substantially decrease the likelihood of misclassifying** patients that truly have OSA as a non-OSA patient

Clusters/phenotypes of AHI N2NV

Median split of AHI standard deviation across all nights showing both mild (AHI 5-15) and moderate to severe OSA (AHI >15) categories have distinct clusters of people with low (Stable) AHI and high (Unstable) AHI variability

Withings dataset

Association between nightly variation is sleep apnea severity and hypertension

Lechat et al. under review - Confidential

Normal sleep reduces with age

Sleep Complaints as we Age

Prevalence of Sleep Disorders with ageing

Young T, et al., Ancoli-Israel S, et al., Sleep 2001; Mant E, et al., Age and Ageing 1992; Ancoli-Israel S, et al. Sleep 1993; Phillips BA, et al., Sleep 1994; Hoch CC, et al., Sleep 1994; O'Keefe ST, et al., Age and Ageing 1994; Phillips B, et al., Arch Int Med 2000; Allen R, et al. Arch Int Med 2005

Aging Worsens the Effects of Sleep Deprivation on Postural Control

Rébecca Robillard^{1,4}, François Prince², Daniel Filipini¹, Julie Carrier^{1,3,4}*

1 Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada, 2 Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada, 3 Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada, 4 Département de Psychologie, Université de Montréal, Montréal, Montréal, Québec, Canada, 4 Département de Psychologie, Université de Montréal, Montréal, Montréal, Québec, Canada, 4 Département de Psychologie, Université de Montréal, Montréal, Québec, Canada, 4 Département de Psychologie, Université de Montréal, Montréal, Québec, Canada

Fig 1. Centre of pressure traces showing greater variability after 24 hours of sleep deprivation vs. normal sleep²⁴. AP-anterior-posterior, ML-medio-lateral

Sway variability as a function of time of day & time awake

Effect of 6 months CPAP on Physiological Profile Assessment Falls Risk Score

Figure 1. Changes in fall risk score pre- to post-CPAP treatment. Dark line represents average change in fall risk score for the group. Grey lines represent individual changes for participants. CPAP – continuous positive airway pressure.

Summary and Conclusion

- Sleep and breathing vary significantly from night to night
- New and emerging technologies allow for multi-night sleep measurement
- Quantifying night to night sleep and sleep disorders likely relate to important health outcomes
- Provides unique opportunity for unintrusive in-home sleep health monitoring in older people towards
 - Sleep disorder screening and monitoring
 - Preventative strategies
 - Healthy ageing

THANK YOU!

Dr Andrew Tucker andrew@sleeptite.com.au www.sleeptite.com.au

